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Abstract. A perspective is provided on Wigner’s classic
paper on transition-state theory (TST). After providing
a brief review of the historical context of this work, we
review its key contributions including Wigner’s dynam-
ical perspective on TST, the fundamental assumption of
TST, and the upper-bound property of classical TST. A
discussion is also presented of subsequent progress in the
field, which was stimulated by this work. This progress
includes the following:

1. Demonstrations of the validity of the fundamental
assumption for classical systems.

2. Further investigations into the classical foundations
of TST that helped elucidate relationships between
classical trajectories and TST.

3. The development of a variational form of the theory.

4. The development of variational TST into a quanti-
tative tool for predicting rate constants.

5. The search for an ‘“exact” quantum mechanical
version of TST.

6. The development of TST-like expressions for the
exact quantum mechanical rate constant.

7. The extension of TST to reactions in condensed
phases.
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1 Historical context and perspective

The early to mid 1930s was a time of intensive activity in
the formulation of transition-state theory (TST). Laidler
and King [1] have provided an excellent review of the
early history of TST, tracing the development of rate
theories using treatments based upon thermodynamics,
kinetic theory, and statistical mechanics, and focusing
on Eyring’s 1935 contribution to the formulation of TST
[2]. A snapshot of the state of the development of TST
and some of the controversy surrounding it in 1937 is
captured in volume 34 of the Transactions of the Faraday

Society, which was published in 1938. This volume is a
compilation of papers and discussion comments from
the 1937 General Discussion of the Faraday Society on
“Reaction kinetics” and it includes contributions from
many of the founders of TST (e.g., E. Wigner, H.
Eyring, M. Polanyi, and M.C. Evans). Wigner’s contri-
bution [3] presented one of two prevailing perspectives
on TST at that time — a dynamical perspective that is
firmly based on a statistical mechanical approach to
formulating the theory. The subsequent paper in this
volume was a presentation of Eyring’s alternative
perspective on “The theory of absolute reaction rates”
[4], which is based upon quasiequilibrium thermody-
namics. A historical discussion of the 1937 General
Discussion of the Faraday Society has recently been
presented by Miller [5], including a detailed analysis of
Wigner’s seminal contribution. The current paper par-
allels Miller’s review and presents a complementary view
that should help provide an even broader perspective on
Wigner’s important contribution.

In the early days of TST, it was apparent that there
was great hope that the method would allow quantita-
tive predictions of reaction rate constants. This hope was
reflected in the title of Eyring’s contribution to the 1937
General Discussion of the Faraday Society which refers
to the ability of the theory to provide the absolute
magnitude of the pre-exponential factor and thereby the
absolute value of the rate constant. In addition, there
was much activity comparing TST with recent experi-
mental studies. As stated by Wigner in the discussion
comments to this volume “there seems to be, however, a
discrepancy between theory and experiment in practi-
cally all cases in which a numerical comparison is pos-
sible” [6]. In the same discussion comment, Wigner made
the prescient observation that energy surfaces may be
more complicated than assumed. Largely because of the
inability to accurately predict reaction energetics (par-
ticularly barrier heights), the realization of the hope of
using TST to quantitatively predict rate constants waited
nearly 40 years.

The popularity of TST during the intervening years
(1940s—1960s) was largely due to Eyring’s thermody-
namic formulation that provided the basis for correlat-
ing and interpreting kinetic data (including isotope



effects). A testament to the popularity of the thermo-
dynamic formulation of TST was the development of the
field of thermochemical kinetics [7]. In the 1970s, as it
became possible to accurately predict potential-energy
surfaces using ab initio electronic structure methods and
to perform accurate quantum dynamical calculations,
interest was revived in developing methods to calculate
absolute rate constants from first principles. During this
time the approximations in TST were examined more
carefully to understand when TST could be expected to
give quantitative predictions of rate constants. Wigner’s
1938 work played a crucial role in the revival of the hope
to develop TST into an accurate, predictive tool and in
advancements in this area over the last 25 years.

2 Key contributions

The major contribution of the title work was an
exceptionally clear exposition of the approximations
inherent in TST. Wigner first stated that elementary
chemical reactions were considered in which the (equilib-
rium) Maxwell-Boltzmann velocity and energy distribu-
tion was maintained, and for which the potential-energy
surface was known. He then went on to state “‘that the
transition state method is based, in addition to well-
established principles of statistical mechanics, on only
three assumptions, two of which are generally accepted.”
The first two assumptions were those that Wigner
categorized as ‘“‘generally accepted”: the electronic
adiabaticity of the reaction and the adequacy of classical
mechanics to treat the motion of the nuclei. The third
assumption has become known as the fundamental
assumption, the fundamental dynamical assumption, or
the no-recrossing assumption of TST.

2.1 The fundamental assumption of TST

Wigner first defined a dividing surface, through the
saddle point of the potential-energy surface and perpen-
dicular to the direction of steepest descent, through
which all reactive trajectories must pass. Wigner then
identified the fundamental dynamical assumption as
follows: a reactive trajectory originating in reactants
must cross the dividing surface only once and proceed to
products. The TST expression for the rate constant
could then be expressed using equilibrium statistical
mechanics without the need to calculate classical trajec-
tories.

2.2 The upper-bound principle

In analyzing the validity of the fundamental dynamical
assumption, Wigner pointed out the effect of trajectories
that recross the dividing surface: the TST rate constant
“will lead, in general, to too high values of the reaction
rate and should be corrected by a factor y, smaller than
1, ...”. He also provided a compelling argument for why
y will go to 1 with decreasing temperature for activated
reactions. Thus, he showed that classical TST is accurate
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(for reactions with barriers) at sufficiently low temper-
atures and its overestimation of the exact classical rate
constant generally increases with increasing tempera-
ture.

2.3 Variational TST

In the final section of the paper, Wigner discussed the
application of TST to three-atom recombination reac-
tions, A + B + C - AB + C. For these barrierless
reactions, Wigner suggested using dividing surfaces that
are more complicated functions of both coordinates and
momentum (e.g., dividing surfaces depending on an
energy), instead of just spatial coordinates. This idea was
developed in more detail in a slightly earlier paper by
Wigner [8] (the “received” dates on the two publications
differ by only 11 days). In the 1937 paper, Wigner
presented the obvious corollary to the upper-bound
principle, that the best estimate of the rate constant
can be obtained by optimizing the dividing surface to
minimize the rate constant. In the 1937 paper, Wigner
went further to state that the accurate (classical) rate
constant is the minimum value of the TST rate constant
for a properly chosen dividing surface.

3 Subsequent progress in the field

Advancements in TST have been well documented in
the literature over the past 23 years [9-16]. Much of
the work on TST has focused on understanding the
dynamical foundations of the theory and the extension
of the theory to allow for quantitatively accurate
estimates of rate constants. Advancements in these areas
can be attributed to the fact that the TST expression for
the classical equilibrium rate constant can be formulated
by making a single approximation, Wigner’s fundamen-
tal assumption.

3.1 Accuracy of the fundamental assumption of TST

As computational capabilities increased in the 1960s
and 1970s, it became possible to test the accuracy of
Wigner’s fundamental assumption by comparing classi-
cal TST with the results of accurate classical trajectory
studies. The first such comparisons can be attributed
to Bunker’s work on unimolecular reactions [17, 18].
Karplus and coworkers [19-21] performed the first
comparisons for bimolecular reactions. Many tests of
conventional TST were performed on atom-—diatom
(A + BC) reactions [22-30], and these tests confirmed
Wigner’s argument that classical TST is accurate at low
temperatures (or equivalently at energies close to and
above the barrier). An interesting observation was that
the validity of TST extended over a broader energy
range for the three-dimensional H + H, reaction com-
pared to the collinear reaction [23]. The implication
is that classical trajectories in the higher-dimensional
phase space are less likely to make it back to the dividing
surface to recross.
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Wigner’s dynamical perspective on TST also led
naturally to the development of efficient methods to
calculate the transmission coefficient (or Wigner’s re-
crossing factor y). This approach is outlined by Keck
[31, 32] for recombination reactions and by Anderson
and coworkers [33, 34] for bimolecular reactions. This
work helped elucidate the connection between classical
TST and classical trajectory calculations.

The fact that classical TST can be derived from a
single dynamical assumption was the impetus for re-
searchers in the 1970s to begin examining in detail the
classical foundations of TST. This area of research was
initiated by the paper by Pechukas and McLafferty [22].
In this work, they described conditions (e.g., features of
the potential and energy range above threshold) such
that classical trajectories will not recross the dividing
surface and classical TST will reproduce the exact clas-
sical rate constant. Subsequent research by Pechukas
and Pollak [10, 35-37] further elucidated the relationship
between classical trajectories and TST. This work
showed that for collinear A + BC reactions, the best
possible TST dividing surfaces for a microcanonical
ensemble are so-called periodic-orbit dividing surfaces,
which are generated by classical trajectories that vibrate
back and forth between two equipotentials in the inter-
action region. Furthermore, Pechukas and Pollak [37]
demonstrated that for collinear A + BC reactions TST
is exact for energies at which the potential surface admits
only one periodic-orbit dividing surface.

3.2 Variational TST

Although a variational formulation of TST was not
presented in Wigner’s 1938 paper, it is clear that the
development of a variational approach to TST follows
naturally from the upper-bound principle of TST. This
was also recognized in the 1930s by Horiuti [38], who
adopted the dynamical perspective and developed a
variational approach to TST. These ideas were exten-
sively developed by Keck [39, 40] to formulate a more
formal variational procedure for finding the best divid-
ing surface. As already mentioned for collinear A + BC
reactions periodic-orbit dividing surfaces are the opti-
mum configuration-space dividing surfaces for a micro-
canonical ensemble. For reactions with larger numbers
of degrees of freedom, practical techniques have been
developed based upon dividing surfaces that are required
to be orthogonal to the minimum energy path [27]
(see Ref. [15] for further discussion and review). This
approach has also proved useful for including approx-
imate quantum mechanical effects (see later). In numer-
ical tests, the variational TST (VTST) procedures were
seen to give practical improvement over conventional
TST, in which the dividing surface is constrained to pass
through the saddle point (see Ref. [15] for a review of
tests of classical VTST).

3.3 Practical methods for predicting
absolute rate constants

As computational capabilities continued to improve in
the 1970s and 1980s, it became possible to calculate

potential-energy surfaces sufficiently accurately to allow
accurate predictions of rate constants. This advance-
ment, as well as progress in the development of TST
itself, rekindled hope of developing TST into a tool that
would provide quantitative accuracy for computed rate
constants. For many reactions of practical interest,
particularly those involving hydrogen-atom transfer,
quantitative accuracy in computed rate constants re-
quires that quantum mechanical effects be included in
the theory; however, as Wigner already realized in 1938,
the rigorous implementation of the fundamental dy-
namical assumption in a quantum mechanical theory is
difficult because ‘“‘one cannot speak about the mean
velocity at the activation point. (Heisenberg’s indeter-
mination principle)” [3]. The earliest attempt to develop
an approximate treatment of quantum effects in chem-
ical reaction rate constants is that due to Wigner [41]. By
considering the lowest-order terms in an expansion in
i of the phase-space probability distribution function
around the saddle point, Wigner developed a separable
approximation, in which partition functions for bound
modes are quantized and a correction is included for
quantum motion along the reaction coordinate. Eyring
[2] systematized the procedure of quantizing the parti-
tion functions for the bound modes of the reactants and
the transition state, and this became the standard
approach to including quantum mechanical effects. In
the 1960s and 1970s, tests of TST against accurate
quantum mechanical results indicated the deficiency of
this separable approach. The failure of the standard
approach was attributed largely to nonseparable effects,
particular on quantum mechanical tunneling [42, 43].
Encouraged by the validity of the fundamental as-
sumption of TST for classical TST and VTST, efforts
were made to develop improved methods for including
quantum mechanical effects into TST. One approximate
approach is to quantize the partition functions for
bound modes and focus on developing improved meth-
ods for tunneling that include some aspects of the mul-
tidimensional nature of the tunneling process. The
development of tunneling methods that are consistent
with VTST was greatly facilitated by the realization that
the adiabatic theory of reactions is equivalent to one
form of variational TST (microcanonical VTST) when
the reaction coordinate is treated classically [27, 44]. In
addition, an important advancement was the develop-
ment of methods that consistently treat threshold con-
tributions in the quantized partition functions and
tunneling correction factors [45]. The first successful
nonseparable tunneling correction was that developed
by Marcus and Coltrin [46] for the collinear H + H,
reaction. Marcus and Coltrin sought the tunneling path
with the smallest tunneling action integral and thereby
least exponential damping. They found the optimum
tunneling path for the H + H, reaction was the path of
turning points of the quantized adiabatic vibrations,
where the turning points are chosen so that the path
“cuts the corner” and reduces the length of the tunneling
path. This method was subsequently extended to other
systems with small-to-moderate reaction-path curvature
[44, 47, 48]. The idea of finding the optimum tunneling
path was further extended to systems with large reac-



tion-path curvature in the least-action tunneling method
[49]. A more detailed review of tunneling methods im-
plemented within this framework is presented elsewhere
[48, 50]. With the implementation of these new tunneling
methods and demonstration of their accuracy [51, 52],
quantum mechanical VIST has turned into a standard
tool for studies of the kinetics of gas-phase reactions.

The success of the fundamental assumption of TST
also provided impetus to develop a rigorous quantum
mechanical TST, i.e., a quantum mechanical theory that
employs the fundamental assumption as its only ap-
proximation and treats the problem as nonseparable [10,
53-55]. Although semiclassical approximations to the
quantum mechanical TST expression of Miller were
developed and successfully applied to the H + H, re-
action [56, 57], by 1993 it was concluded that no rigor-
ous quantum mechanical version of TST exists which
does not require a solution of the full multidimensional
reaction dynamics [58]. The effort to develop a rigorous
quantum mechanical TST was productive as it provided
the foundation for the development of accurate quan-
tum mechanical methods to directly calculate thermal
rate constants. (See Miller [58, 59] and references
therein.) These methods are not a form of TST (since
they do not invoke the fundamental assumption), but
exploit the use of short-time quantum dynamics in the
interaction region to calculate the reactive flux through
the transition-state dividing surface. In this sense, this
approach is the quantum analog of the classical ap-
proach of Keck and Anderson [31-34]. Further advances
in reaction rate theory, which have benefited from re-
search and advances in TST, are documented in Miller’s
recent paper [3].

3.4 Reactions in liquids

TST has also been widely used to treat reactions in
condensed phases. Wigner’s dynamical perspective has
particularly had an impact on the extension of TST to
reactions in liquids. Most applications to liquid-phase
reactions have used the thermodynamic formulation of
TST [60], which includes the effects of the condensed
phase on reaction free energies in an approximate
manner. Chandler [61] provided a more rigorous for-
mulation of classical TST for liquids. The new element
introduced by the liquid phase is collisions of solvent
molecules with the reacting species that can lead to
recrossings of the dividing surface and a breakdown
of the fundamental assumption. A recent review [16]
documents many more advances in the extension of TST
to the kinetics of condensed-phase processes.

Summary

In 1981 Pechukas wrote [12] “Transition state theory
(TST) is 50 years old, and it is a tribute to the power and
subtlety of the theory that work on the foundations of it
is still a respectable and popular activity”. To a large
extent, this is still true today. The development and
advancement of TST can be credited to many workers
over the years. H. Eyring, M. Polanyi, and E. Wigner
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were all involved with early development of the theory
and Eyring’s work in particular played a major role in
popularizing TST in the early years. Many of the
advancements in TST over the last 20-plus years were
aimed at understanding the foundations of the theory
and developing TST into a more rigorous framework for
accurately predicting rate constants. These advance-
ments have drawn from many contributions in the field,
some of which are described in this special issue;
however, the foundation for these advancements can
be traced back to Wigner’s classic work that clearly
described the dynamical nature of the theory and the
one, fundamental approximation needed to derive the
classical TST rate constant.
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